'“70326-0-

THE UNIVERSITY OF MICHIGAN

Technical Report 25

CONCOMP

R A PROGRAMMING SYSTEM
FOR THE SIMULATION OF CELLULAR SPACES

Ronald F. Brender

This document has been approved
for public release and scle; lia D
distribution {s unlimited '

¥ T
-t d i sprein s ¢ o Se b 4 e

THE UNIVERSITY OF MICHIGAN

Technical Report 25

A PROGRAMMING SYSTEM
FOR THE SIMULATION OF CELLULAR SPACES

Ronald F. Brender

CONCOMP: Research in Conversational Use of Computers

F.H. Westervelt, Project Director
ORA Project 07449

supported by:

ADVANCED RESEARCH PROJECTS AGENCY
DEPARTMENT OF DEFENSE
WASHINGTON, D.C.

CONTRACT NO. DA-49-083 0SA-3050,
ARPA ORDER NO. 716

administered through:
OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

January 1970

ACKNOWLEDGEMENTS

The generosity and support of many individuals and institutions have
given me substantial assistance during the course of this work. I e*tend
my appreciation of Professor John Holland, whom I value as a close friend,
for serving so loyally as my Chairman; to Professor Arthur Burks for sup-
porting this work both as a member of my committee and as Director of the
Logic of Computers Group; to Professors Bernard Galler and Larry Flanigan
for their interest and careful attention to so many details of the work;
to the University of Michigan, the National Institutes of Health, and the
Advanced Research Projects Agency for direct and indirect support in many
ways; to Daniel Frantz and John Foy, long-time friends and talented system
programmers, for creating much of the software foundation on which my
implementation depends; to Thomas Schunior for his constant flow of ideas
and techniques; to James Mortimer for his interest and courage in devel-
oping his application of the system at a time when it was still in a state
of considerable flux; to Jean Slater, Bonnie Dailey, and Jan McDougall
for patiently typing the many drafts; to (Mrs.) Jinx Dawson fﬁr drawing
many of the figures; to Richard Laing and Thomas Dawson, capable admini-
strative assistants, for considerable help in coping with the Establishment;
and to my wife, Maurita, for her devoted support of my efforts, for her
tolerance when my studies occupied my time and attention, and for her
valiant struggle with my manuscript to make it stylistically acceptable.

To each goes my heart felt thanks.

ii

—— e

TABLE OF CONTENTS

INTRODUCTION

On Simulation

Informal Definition of Cellular Spaces
Concepts of Embedding § Interpretation
Review of Several Cellular Models
1.4.1 John Von Neumann

2 Edgar F. Codd

3 Larry K. Flanigan

4

5

— et et et
P T S

Marion Finley, Jr.
John H. Holland

2.1 Discreteness

2.2 Cell Space Geometry

2.3 Size of Simulation and Concept of Quiescence
2.4 Neighborhoods '
2.5 Transition Functions

2.5.1 Data Structure

2.5.2 Parameters Called by Value

2.,5.3 Input-Output

6 Input to Cell Space

7 Output and Monitoring of Cell Space

.8 Interactive Requirements

9 New Language or 01d?

1

A LANGUAGE FOR CELL SPACE SIMULATION

3.1 Procedural Aspects
3.1.1 Lexical Format
1.2 Primitive Data Types
1.3 Declarations
.1.4 Executable Statements
3.1.4.1 Assignment
.1.4.2 Unconditional Branch
4.3 Conditional Branch
4.4 Loop Statement

WLl

3.1.
3.1,
3.1.

ll
l1

iii

Page

11
13

15
17
17
18

24

24
24
27
29
30
31
31
33
33
34

36
37

40

42
42
44
45
50
50
54
54
55

]

T

3.1.4.5 Miscellaneous Executable Statements
3.1.5 Literal Structured Variables
3.2 Simulation Oriented Aspects
3.2.1 Data Structures
3.2.1.1 CELL Data Structure
3.2.1.2 External and Initial Cell States
3.2.1.3 Neighborhood, Size of Space and
Edge Declarations
2.2 Entry Points
2.3 Operators .
2.4 Default Specifications -
3.3 An Example: MODS8

4, THE RUN-TIME ENVIRONMENT

4.1 Keyboard Command Language
1.1 Immediate Execution
1.2 Deferred Execution via Micro-Program
1.3 Commands for "undefined" Transitions
4.2 The Display Facilities
4,2,1 DISPLAY CELLS
4,2,2 MULTI DEFINE
4,2,3 DISPLAY PARAMETERS

5. APPLICATIONS, EVALUATION § SUMMARY

5.1 Applications

5.1.1 An Example From the Literature
5.1.2 Current Work

5.1.3 Related Problem Areas
Evaluation

Extensions

Summary

[T T 7,]
L] L] L]
& LN

REFERENCES

APPENDICES

iv

Page

56
57
59
59
59
61

61
63
66
66
67

70

74
74
79
81
82
85
87
90

93

93

93
100
101
104
105
109

111

113

I

Figure

1.1
1.2

2.1

3'1
3.2
3'3

4.1
4,2
4.3
4.4
4.5
4.6
4,7
4.8
4.9

5.1

LIST OF FIGURES

Exanple Space and Neighborhood Templatés
Example Transition Function

Embedding of Hexagonal Cell Space

Example Data Structure Definition and Related Notation
Syntax of Assignment Statement
MOD8 Cell Space

Conventional Computer Configuration
Commands Without Parameters

Commands With Parameters

Commands for Deferred Execution

State Transition Diagram for Display Images
Command Menu

Example Cell Space State Display

Data Entry Menus

Parameters Menu

FM Cell Space

Page

10
26

47
51
68

71
75
76
80
83
84
86
88
91

- 94

EIZ

COMMENTARY
ON A
CONCEPT OF PLATO

In performing a computation we do not handle objects of the real
world, but merely representations of objects. We are like people who
live in a cave and perceive objects only by the shadows which they cast
upon the walls of the cave. We use the information obtained from study-
ing the form of these shadows to make inferences about the real world.
However, we are not merely passive observers of shadows cast by real
objects. We modify reality and observe the new patterns of shadows
cast by the nev configuration of objects. We go even further, forgetting
altogether about the real objects that cast the shadows, treating the pat-
terns of shadows as physical objects, and studying how patterns of shad-
ows can be transformed and manipulated.

Information structures are representations of real objeéts just like
shadows on the walls of a cave. The programmer studies how information
structures can be transformed and manipulated and in doing so learns
something about objects represented by the information structures.
However, the real computer scientist falls in love with information
structures and studies their properties not only for what they tell
him about the real world but because he finds them beautiful.

- Peter Wegner
Programming Languages,
Information Structures, and
Machine Organization (1968)

vi

oo it e e e

Dedicated to my grandfather

Peter E. Brender
Civil Engineer and City Planner

who first introduced me to the

world of computers in 1958 when
he purchased an LGP-30 for his firm.

vii

orae—

Ak

4]

S

%

IBLANK PAGE

ABSTRACT

A PROGRAMMING SYSTEM FOR THE
SIMULATION OF CELLULAR SPACES

by
Ronald Franklin Brender

Chairman: John H. Holland

Regular networks of similar interacting components constitute an
important class of models in many disciplines, from automata theory to
parallel computer systems to biological systems. Yet, no simulation
system provides comprehensive facilities for studying such models con-
veniently by computer. Such a system is proposed gnd an implementation
exhibited. Careful attention is given to setting forth the guiding
considerations in developing the final form of the system. Primsry among
these is maximizing the usefulness of the system for supporting heuristic
and interactive exploration of model behavior.

Chapter 1 develops the notions of cellular spaces (regular geometry,
neighborhood template, transition function) and reviews models used by
Von Neumann, Codd, Flanigan, Finley and Holland. Chapter 2 analy.es
these models and formulates the requirements for building a simulation
system suitable for a wide range of cellular models. Chapters 3 and 4
describe a total programming system for simulation. A language is
designed that provides novel constructs useful for cellular models. A

simulation support system provides on-line monitoring of model behavior

on a graphic CRT and experimenter interaction with the system via keyboard
and lightpen. Chapter S discusses several applications developed on the
system, and evaluates and summarizes the work. Several appendices detail

the implementation.

1. INTRODUCTION

John von Neumann made many contributions to the computing sciences in
such diverse areas as electronic technology, computer orgaﬁization, pro-
gramming theory, and mathematical foundations. Two contributions, in
particular, have had an enduring impact and are closely allied to efforts
reported here,

Von Neumann's logical, universal space was defined to prove, for the
first time, the logical possibility of a self-reproducing machine. lSince
that time the formalism he originated has been elaborated and extended into
many application areas and taken on many guises. These include the formal
models of Myhill, Yamada and Amoroso, Codd, Holland, and many others. In
addition many investigations of physical phenomena,.such as vibrating
membranes and weather systems, and of biological systems, such as neuro-
logical networks and biological cell populations, have drawn heavily on
that foundation. Formal models in these areas have bsen variously called
cellular structures (Burks), iterative arrays (Holland, Hennie), tessella-
tion structures (Myhill), tessellation automata (Yamada and Amoroso) and
cellular spaces (Codd). We shall use exclusively the term "cellular space"
as both a general name for all related concepts and for the particular
models developed herec.

Von Neumann's second contribution concerns the manner in which com-
puters are used in these investigations. In surveying von Neumann's con-

tributions, Burks [15] writes in this respect:

B

The procedure which he [von Neumann] pioneered and prémoted
is to employ computers to solve crucial cases numerically and to
use the results as a heuristic guidé to theorizing. Von Neumann
believed experimentation and computing to have shown that there
are physical and mathematical regularities in the phenomena of
fluid dynamics and important statistical properties of families
of solutions of the non-linear partial differential equations in-
volved....Von Neumann believed that one could discover these
regularities and general properties by solving many specific
equations and generalizing the results. From the special cases
one would gain a feeling for such phenomena as turbulence and
shock waves, and with this qualitative orientation could pick
out further critical cases to solve numerically, eventually de-
veloping a satisfactory theory.

This particular method of using computers is so important
and has so much in common with other, seemingly quite different,
uses of computers that it deserves extended discussion. It is
of the essence of this procedure that computer solutions are not
sought for their own sake, but as an aid to discovering useful
concepts, broad principles, and general theories. It is thus
appropriate to refer to this as the heuriscic use of computers....
[When the computations are compared with experimental data] the
heuristic use of computers becomes simulation.

Many investigations of these systems cannot be carried out without
computer assistancc because:

1) the behavior of these systems cannot be expressed in closed
analytic form. The only way to determine the state of a system at a time
t' given its state at t is to calculate the successive states at t, t¢l,
te2,..., t'-1, t',

2) The systems to be simulated must consist of at least several hun-
dred entities to provide sufficient structure to be interpretable as rep-

resenting interesting bchavior.

3) The kind of behavior of interest in such systems involves time
scales several orders of magnitude larger than the time scale on which the
system must be simulated.

4) Exactly what constitutes interesting behavior is itself not rig-
orously definable. Either considerable computational power must be devoted
to the task of recognizing interesting behavior as well as generating it,
or on-line monitoring and interaction is a necessity to permit an experi-
menter to use his insight to recognize the desired behavior.

Inspite of the important role that cellular models have played in
much research, there are no computer languages available that have the right
characteristics for generating and using simulations of cellular models.

We are concerned here with filling that lack by designing and implementing
a simulation language and system specifically oriented toward cellular
models. Equally important, we seek to create a tool that will permit a
computer to be used conveniently and heuristically.

We have fulfilled our goals by 1) developing a run-time environment
(or subsystem) for use in conducting cellular simulations, 2) designing
a language suited to specifying the characteristics of cellular systems, and
3) implementing a compiler for that language. This work has been conducted
on the computer facilities of the Logic of Computers Group.1

The heuristic utility of the system is accomplished in part by exploit-

ing the high data rate and flexible graphic capabilities of the CRT display

1 The Logic of Computers Group is a research unit within the Department of
Computer and Communication Sciences of the University of Michigan. Its
computer facilities include an IBM 1800 with disk bulk storage interfaced
to a DEC PDP7 with graphic CRT display.

that we have available. The system is also quite flexible and modular,
offering the experimenter a range of capabilities and the opportunity even to
handle specific tasks in a non-standard fashion if desired. The system

will, for example, allow the user to selectively monitor various charac-
teristics of the simulated system, to halt, to save condit?ons, to modify

the characteristics of the system, and to resume the simuléfion. The
languaée provides to the user a natural and efficient manner in which to
generate a simulation. Its notation resembles as much as possible the
mathematical notation frequently used in describing such systems.

We emphasize that the purpose of this investigation is the design of
an implementable system which others will find has utility in conducting
investigationsin which cellular models are a method and not an end in
themselves. Just what this author means by an implementable system is
undoubtedly influenced by his own experience at doing an implementation
in a particular operating environment and his personal prejudices about
what is important and, hence, muet be implementable and what can be rea-
sonably compromised in the interest of limiting the effort required to an
acceptable amount. Every effort will be made to make these biases explicit
where they are recognized.

The language of our system has aspects of two distinct types. The
first of these is a programming language in which to express the significant
computational aspects of cell state transitions. The second of these is
a command language which is employed during the course of a simulation to
direct the global characteristics of the simulation system. In today's
large scale, sophisticated computer systems the Aistinction between these

aspects can be made arbitrarily small through the agency of incremental

compilers, interpreted code, and dynamic loading (and unloading) of exe-

cution modules. However, since one important characteristic of any simu-
lation system is a fast execution rate,_this author feels the above dis-

tinction will remain useful for some time.

This chapter develops the notions of cellular space and related con-
cepts and concludes with a brief review of several models, some actually
implemented and some not, that have influenced this investigation. Chapter
Two presents an analysis of the requirements for simulating cellular models
and suggests a particular structure for a simulation system. Chapters
Three and Four set forth a particular language and system specification de-
signed to meet the requirements developed in Chapter Two. This exposition
is purposefully kept as independent of the pecular hardware and system
constraints under which the author implemented the described system as is
practical. Chapter Five reviews the application of this language to past
and current work, suggests extensions and generally evaluates the utility
of the model. Several appendices detail the actual implementation ac-

complished by the author in the course of this research.

1.1 On Simulation

A system may broadly be any collection of components or elements each
of which is characterized by giving its state at a given point in time.
Moreover, a component may itself be a system, and hence a subsystem of the
containing system. The state of a system as a whole is known if the state
of each of its components is known. The state of the system as a whole is
characterized by the states of its components. A succession of system
states at particular chronological instants of time constitutes a state

history, which we will also call a record of the behavior of the system.

-

A model of a system A is a system B! that purports to repreéent the
(relevant) propertics of system A. Simulation is the use of a model to
produce (compute) chronologically a state history of that model, which is
regarded as representing a state history of the modeled system.

There are two basic strategies for doing simulation: the fixed
time-step method and the next-event method. In the fixed time-step method,
changes in system state (events) are assumed to occur only at times which
are an integer multiple of a fixed unit of time called the time-step size.
At each time-step each of the elements of the simulated system are examined
to determine the new state to be used as its state for the succeeding time
step. In the next-event method, changes of state may occur at arbitrary
points in time. At any given time, events may be "scheduled" to occur at
some later point of time. The set of scheduled events is kept in a queue
in chronological order. The simulation proceeds by selecting the event
that is next in the queue and computing the effects of that event. (This
may or may not involve scheduling further events. If the queue ever becomes
empty, the system has reached a '"steady state" and the simulation terminates.)
The usual practice in both methods is to assume that, when multiple events
occur at the same point in time, it will make no difference (for the pur-
poses of the simulation) in what order they are actually performed by the

simulator.

1.2 Informal Discussion of Cellular Spaces

A cellular space is a collection of functionally similar cells (or

modules or units) which are connected to each other in a regular manner.

1 For our purposes, models are usually abstractly defined systems.

Let us take for illustration a two-dimensional plane marked into squares
of unit area. Let the center of some arbitrary square be called the origin
and an obvious coordinate system be imagined for identifying a particular
square relative to the origin. Such a system is regular in the sense that
no matter where the origin is chosen, the space '"looks' the same.

Each cell has associated with it a set of cells called its neighbor-
hood, whose states may take part in determining the behavior of the central
cell.1 Typically, the set of neighbors of a cell is determined in the same
manner for every cell, and this determination is often closely related to
the regular manner of interconnection or topology of the space. In our
example one could choose the four cells which have a common.edge with the
central cell as its neighbors. (See cells A and B of Figure 1.1) Another
simple neighborhood is the set of eight cells whose centers are less than
2 units distance from the central cell. (See cell C in the Figure). Note
that it will often be useful to consider the central cell to be in its
own neighborhood.

Each cell may be characterized by giving its state. Each cell in the
cell space has its state drawn from the same state spacez,

The behavior of each cell is specified as a function F: SN + S

Throughout this investigation, when speaking of a cell x and its neigh-
borhood set of cells N(x), cell x will frequently be called the central cell
of the neighborhood. While the word "central' is often intuitively inter-
pretable in its common sense, it is introduced more importantly to avoid
an awkward naming problem.

2 . : S

A state space is the set of possible states. Do not confuse this with
space state, which is a particular state characterizing a cell space. Note
that a state space need not be finite or even discrete.

c c
C

c
c
a c c

b

a A a
2 B b

a b
o

o is the origin cell
Cell A has neighbors labelled "a"
Cell B has neighbors labelled "b"

Cell C has neighbors labelled "c'"

Example Space and Neighborhood Templates

Figure 1.1

S—]

where S is the state space, and
N is the cardinality of the neighborhood set.

The arguments of F are the states of the cells in the neighborhood of the
central cell at time t and the value of the function becomes the state of
the central cell for the next time step, t+l. The sequence of cell states
of a given cell will be called the behavior of the cell.

By calculating the function for every cell of the space, a new state
assignment for the entire space is determined. The sequence of state as-
signments for the entire space is called the behavior of the cell space.

To illustrate how "complex' behaviorAmay be modeled in a "simple"
space, consider Figure 1.2. The space is again the two-dimensional
Cartesian system and we will use as neighbors for a cell, tﬂe four cells
with boundaries common to the central cell. Let each cell be in one of
four possible states designated by the numerals 0, 1, 2, 3. Figure 1.2
shows a possible state assignment for a portion of the space. Also shown
in Figure 1.2 is a natural language statement of a transition function.

If the given transition function is applied to this space, it is easy to
see that the 1 to the right of the 2 in the figure will change to a 2, the
2 to a 3, the 3 to a 1, and the rest of the space willhremain unchanged.,

It is as though the pattern "3 2" were propagating along the path of 1l's,
Indeed a little reflection will satisfy one that the given transition func-
tion will allow the pattern to turn corners and to split at a junction of
two paths and travel down both branches.

Note that in such a simple cell space directionality of the 'signal"
has been obtained by representing it with two adjacent cells. As an al-

ternative, a more complicated cell could be specified in which direction

10

0 0 0 0
1 3 2 1
0 0 0 0
0 0 0 0 0
1 1 1 1
0 0 0 0
Transition Function:

If current Then next
state is-- And-- state is--
1 Any neighbor 2

in state 2
byig “».
(3 2
2 - 3
3 - 1
Otherwise No change

Example Transition Function

Figure 1.2

11

of propagation was coded in the state of a.cell. Then a signal could be
represented as a single cell on a path rather than as two cells.

In cellular simulations there is a great deal of latitude in choosing
between the complexity of a cell and complexity of interactions between
cells. A given kind of behavior can potentially be modeled in many ways.
This freedom of choice is analogous to working with thermodynamic systems;
the art of the science of thermodynamics lies in deciding where to draw
the boundary between system and environment in order to be able to get the
information needed. Similarly, in working with cellular models there often
is an art in deciding what behavior should be built into the cell state
transition function and what part synthesized from groups of cells. There
are many parameters to explore: the topological space itself, the neigh-
borhood specification, the initial state assignment, the transition function.

It is not at all obvious from examination of a transition function
in some cell space what range of behaviors it can be used to model. Clearly
the initial state assigned to a space is crucial to the resulting behavior.
Conversely, given some system that one wants to simulate with a cellular
space, there is no formal approach to finding such a space. One might
consider these the "proto-typical' problem statements in working with cellular

systems.

1.3 Embedding and Interpreting

The concept of embedding one model in another plays an important con-
ceptual role in the applications of cellular model simulations. Informally

a model A may be said to be embedded in a model B if there exists a map

12

e: A~ 28 from components and their states ‘in A to sets of components and
their composite states in B which preserves the structural and behavioral
properties of A in the image model B. The inverse of an embedding e: A---ZB
is an interpretation of B in terms of A.

Suppose M and M, are two models. Then an embedding e of M, into

M, must satisfy the following:1

2
1) Distinct elements of M1 map into distinct sets of elements of M,.

2) Each (input, output) of an element of M, maps into an (input,
output) of the image element(s) in M,.

3) If input i of element a is connected to output o of element g,
then in the image e(i) is connected to e(o0).

4) When a state of M2 is the imszé of a state of Ml’ then the be-
havior of Mz does not depend on any inputs that are not in the image of the
inputs of Ml'

S) The successor state(s) in M2 of the element image must be the image
of the successor state in M;.

There are several properties of embeddings that should be noted. First,
a single element in the domain model M1 can be mapped into a set of elements
of the target model MZ' This means that elements of the model M2 may be
"simpler'" than elements of Ml’ but by combining several elements the state
space and behavior can still be represented.

Second, the image model may have "extra' elements not used in the em-
bedding. These are no problem so long as the behavior of the elements of
the image of M1 do not depend on the behavior of elements not in the image,

Third, the regular spacial organization of cellular models permits move-

ment to be modeled in a qualitatively unique manner. In the example of a

: Holland [11] gives a more rigorous definition of embedding in terms of com-

positions.

13

signal on a path just cited, the signal is said to move. But no'ghigg
moves, mere’y a pattern of states moves in a regular way. The uniformity
of cellular m:dels makes this concept of a moving pattern possible. By
extending the embedding function defined earlier to b3 a function of time,
(but still satisfying all the given constraints at any particular time),
the notion of motion within a cell space is readily subsumed within the

notion of embedding.

1.4 Review of Several Cellular Models

The remainder of this section will briefly review several cellular

models and their applications that have had a significant impact on our work.

1.4.1 John von Neumann

John von Neumann's establishment of the concept of cellular spaces is
no less important than his many other contributions to the computing sciences.
He set forth a system in which behavior readily interpretable as self-re-
production could be modeled.

Von Neumann's cellular space [1, 15] consisted of an infinite two di-
mensional array of identical finite automata each of which may be thought of
as a unit square with the aggregats covering the plane. The transition
function for each cell depended on the state of the cell itself and on the
state of the four "neighbor" cells which shared a common boundary with the
center cell, All cells represented the same 29-state finite automata. A
particular state is designated as the quiescent state and the transition
function provides that if all five arguments are quiescent then the value of
the function is the quiescent state. Von Neumann further required that the
infinite array have only a finite number of non-quiescent cells at the initial

time t = 0.

~

14

Briefly, certain states represented transmission states which could
be combined with other such states to provide passing of an activation sub-
state from cell to cell analogous to conduction of a signal down a wire.
Certain states enable logical functions such as AND and OR to be performed
on such signals. The NOT logical function was not provided for reasons
connected with representing construction in the system, and hence, the
logical capabilities were not functionally complete. Von Neumann synthe-
sized the NOT function from operations concerned with returning a cell to
the quiescent state; thus a signal moving down a path could be stopped
(negated) by opening the path ahead of it. Certain states were associated
with changing the quiescent state of neighbor cells to any of the (non-
active) non-quiescent states.

Von Neumann showed how certain fundamental functional units, such as
pulse encoders and decoders, could be formed by appropriate assignment of
states to a contiguous group of cells. Increasingly higher level units
were synthesized from these units. Finally he demonstrated how to build
a tape controller and a universal constructor. This constructor is capable
of reading a coded description of a cell configuration from a linear
array of cells interpreted as a tape and constructing a device from the des-
cription in a nearby quiescent region of the cell space. Putting a descrip-
tion of the constructor itself on the tape and taking care for a few non-
trivial details (e.g., a way to copy the original tape onto the newly
constructed device and a way to provide the initial activation) he demon-

strated a method for achieving the desired property of self-reproduction.

15

1.4.2 Edgar F. Codd

The von Neumann system served as a direct inspiration for Codd's dis-
sertation [2]. Codd investigated whether the mathematical properties of
universal computation and reproduction could be achieved in a cellular space
simpler than that used by von Neumann.

Codd exhibited an 8-state, S-neighbor (same neighborhood as von
Neumann) space in which could be embedded a universal Turing Machine and
a universal constructor interconnected to give a self-reproducing machine.
The eight states are used roughly as follows:

Zero represents the quiescent state. As with von Neumann, a finite
number of cells may be non-quiescent in the initial configuration, and if
all neighbors of a quiescent cell are quiescent then the cell remains
quiescent for the next time step. State one represents a signal path. State
two represents a sheathing or insulating state that surrounds a signal path.
(The concept is analogous to that of a myelin sheath in neural systems.)
Codd demonstrates that any desired machine can be "built" by changing ap-
propriate zero states to one states and then later initializing the device
by propagating a special sheathing signal along the path. This s{gnal sur-
rounds the path by two states as it propagates, State three is used to form
uni-directional paths. States zero through three are further classed as
inactive states.

States four through 7 are termed active states and are used for signal
states. The transition provides for conversion of one signal state into
another so appropriate signals can be generated as needed.

Through heirarchical constructions working from simple gates and

directional paths to a tape unit and universal constructor, Codd's develop-

A TP NN ——— e

16

ment closely mirrors von Neumann's (in spirit if not in detail) in demon-
strating that his cell system has the desired properties. Codd further
shows how any eight state-five neighbor cell space can be simulated by a
two state-85 neighbor space. Hence, all of his results immediately
generalize to such a two state cell space.

Of further significance here is the methodology used to find an ap-
propriate eight state-five neighbor transition function. While von
Neumann's approach was completely analytical, Codd's was largely empirical.
Using a D.E.C. PDP-1 computer, Le programmed a simple simulator to enable
him to monitor the behavior of (a portion of) his state space. Successive
state arrays were typed out on a typewriter. The transition function was
table driven and where a previously unencountered combination occurred,
the neighborhood and current state were typed out and Codd given the oppor-
tunity to define the new state to be used. By incrementally defining the
transition function and then observing the behavior provided, back-tracking
as necessary, Codd gradually built up a transition function which exhibited
the needed behavior. Several different neighborhood configurations were
tried and abandoned during this exploration.

It is important to note the heuristic and exploratory nature of this
investigation. The visual pattern recognition and insight of the investi-
gator play an important role in determining the course of the investiga-
tion. Since the number of transition functions possible is 885 (actually
fewer after considering the symmetries Codd imposed) it is clear that ex-

haustive search methods could not possibly be a practical approach to the

problem.

17

1.4.3 Larry K. Flanigan

Flanigan [6] investigated the electrophysiological properties of the
A-V node (atrioventricular node) of mammalian hearts, both in the laboratory
and via computer simulations. He developed a cellular model of the node
based on anatomical and electrophysiological data and on earlier cardiac cell
models. The model was concerned with the propagation of "excitation” from
the atrial edge to the ventricular edge of the node and the role this ex-
citation plays in coordinating contractions of the heart. His simulations
enable him to suggest possible mechanisms for several important classes of
node behavior, both normal and pathological. And quite importantly his
model supporcs the contention that cardiac behavior is explainable on the
basis of a cellular system rather than a syncytium, i.e., as the result of
the effects of local autonomous units rather than a single functional
entity.

Each cell of the model is described by a single transition function
determining its behavior from its own state and that of (up to) six neigh-
bors. Cell state is described by typically 5 or 6 parameters. A two
dimension, six neighbor, hexagonal geometry was used. Networks of from
approximately 40 to 300 cells were simulated with configurations having
either an approximately rectangular shape or a '"funnel' shape. Cells along
the input edge were identical with the rest of the array except that they
had "neighbors' lying outside the array. The state of these external "input

cells" was explicitly controlled to provide the effects of external activity.

1.4.4 Marion Finley, Jr.
Finley is one of the most recent in a line of investigators beginning

with D. O. Hebb[8] and including Rochester [14], Holland [4, 14] and

SN
o

bt ' e

e ————— e

18

Crichton [4]. These researchers have worked with various and increasingly
sophisticated models of neural systems in an attempt to demonstrate the
validity of the cell assembly concept postulated by D. O. Hebb. Basically,
a cell assembly is a collection of neurons that comes to operate as a
functional unit as a result of its stimulus history. Finley claims that he
was very close to this demonstration when the desire to graduate and lack
of computer funds curtailed his investigation.

His simulations typically involved 400 neurons in a two-dimensional
rectangular array. The number of inputs received by each neuron (i.e.
its neighborhood) ranged from 10 to 60 in various experiments. The pattern
of interconnection, randomly generated at the beginning, was fixed during
a single experiment. Thus each cell had an explicitly designated neighbor-
hood. In later experiments the'distribution of these interconnections was
biased by the distance between two cells. Each interconnection was char-
acterized by a "synaptic value'" which determined the extent of influence of
each of a cell's inputs. The behavior of these synaptic values as well as

the statistical behavior of the network as a whole was studied in detail.

1.4.5 John H. Holland

Inspired in part by von Neumann's cellular space and seeking a more
general formal basis for his study of parallel systems and adaptation,
Holland [10] defined a class of iterative circuit computers. Iterative
circuit computers are composed of a large numﬂer of identical modules
operating in parallel in a symchramous fashion. Because of its compactness
and strong relationship to the simulation model of this thesis, the

following characterization is quoted from Holland:

i)

19

The class of iterative circuit computers is the set of all

devices (automata) specified by the admissible substitution in-

stances of the quintuple (4, 4°, X, f, P). Each particular quin-

tuple designates a distinct interative circuit computer organiza-

tion.

Intuitively the five parts of the quintuple determine the

following features of the organization:

1.

3.

4.

s.

Selection of A determines the underlying geometry of

the array, particularly the dimension--thus, among other
things A determines whether the array is to be planar,
3-dimensional or higher dimensional;

Selection of A° determines the standard neighborhood or
connection scheme of modules in the array--thus A4° de-
termines the number and arrangement of modules directly
connected to a given module;

Selection of X determines the storage register capacity of
the module;

Selection of f determines the instruction set and related
operational characteristics of the module;

Selection of P determines the path-building (addressing)
capabilities of the modules.

More formally, the admissible substitution instances of each of

the five quantities are:

L

A must be some finitely generated abelian group having a
designated set of generators, say go, gis ceor Gy with the
restriction that no constraining relations involve gy.

That is, the group is free on gy. The positions of modules
in the array are indexed by elements of the subgroup 4'
generated by gls s Gy The t%me-step %s given by the
exponent of gp. Thus a = got g1J1 cee gnJ", an element of
A, specifies time-step ¢t at the module having coordinates
Gy ooy jn). By choosing the subgroup A' appropriately the
modules can be arranged in a plane, or a torus, or an n-
dimensional array, etc. For example, if A’ is free on two
generators g1, g2, an infinite planar array is specified.

e U —

2.

3.

4.

20

If the constraining relations
@' =
gzloo = &

where e is the group identity, are added, a 2-dimensional
torus 100 modules in each diameter (10,000 modules total)
is specified. .

A° sust be a finite set of elements, {a;, ... ak}, belong-
ing to the subgroup A4' of A. For a module at arbitrary
location, A° specifies the arrangement of directly connected
modules. Thus the modules directly connected to the module
indexed by a = got gljl ..._gnjn will be the modules at

t + Kk, n+k, k., k
a;¢ =go g1 L] oo gnJ in, where a.=g) il ... g, in.

For example, if there is a module at (j;,J2) relative to
generators g, g2, and directly connected modules are to be
at coordinates (j; + 1, j2), (f1,d2 + 1), (/1 - 1, j2), and
(71, d2 - 1), then 4° should be the set {g),g2,91 ,g2!} where
g ! is the group inverse of g.
X can be an arbitrary finite set. The set of internal states
of the module is the set S = X x Y where Y is the cartesian
product njfl Yi’ Yi = njfl {aj U ¢} and aj € A°. That is,
Y is the set of k¥ x k matrices with entry Yij being a; or ¢.
The set X corresponds roughly to the possible states of the
module's storage register; the set Y consists of the possible
gate configurations for the paths--see the transition equa-
tions below.
f can be an arbitrary finite function of the form

Frisuekass
f determines the instruction set, that is, the permissible
transitions of the storage register states--see the transition
equations.
P can be an arbitrary finite function of the form

P:S~+Y

P determines changes in path gating--see transition equa-

tions.

|
f
} 21

Having chosen (4, A°, X, f, P), the behavior of the corresponding
iterative circuit computer is completely determined by the following
state transition schema:

[[S(a) will designate the element of S associated with a under
the mapping defined recursively by the transition schema. Under

{ interpretation S(a) designates the internal state of the module
with spac?-time soordinates (t, jl, ...,jn) corresponding to

t a=g tglﬂl...gn?”. This convention will also be used for the
components of S and, in particular, ij(a) will designate the
value of element Yié+%n Ehe matr%x Y associated with a, Note
also, that goa = gg ~g131 ...gnJ" designates the module at the
same space coordinates as given by o, but at time ¢+ 1 rather

| than ¢.]

| The transition schema for Y(gya) determines the path-gating at

time ¢ + 1 in the corresponding module in terms of the internal state

of the module at time ¢, S(a). Under interpretation, if Yﬂj(a) =

o the gate is open so that information can be passed without a time-

step delay from the module at aj° through the module at o to the

module at ai- a; if Yij(a) = ¢ the gate is closed. In other words

Y(a) tells how information is to be channeled through the module

to its immediate neighbors; the matrices for these neighbors tell how

| the information is to be sent on from there, etc. (Details of the

information transfer are given by the transition equations for S(gja)).

' Y;:(goo) = ¥;(a) if Q;2(a) = 0 and P,.(a) = oy
= Pij(d) otherwise
where Pij(a) is ;?e matrix element (¢,j) of P(S(a))
and Qij(a) = Ah=lqjhﬁﬁj“)

qjh(e) =0if {jh(e) = ¢ and th(e) =y

1if Py (8) = o

Azquhz (a,a) otherwise

where Ak

s . I3 o
] qu1s the conjunction of the U *

- g

yr Tl

22

Under interpretation Pij(a) specifies a proposed gate-setting for
time ¢ + 1 at the given module. Qij(a) prohibits any change in the
gate-setting, if there are any changes elsewhere in the path leading
through that particular gate. This prohibition prevents the follow-

ing unstable situations:
1. A cycle of connections without delay (operation of modules

belonging to such a cycle would in general be indeterminate).
2. An indefinitely long chain of connections without delay
(otherwise a possibility in certain interesting infinite

arrays).
The transition equations for X(gga) are given in terms of a function
I: B+ S, defined for a subset B of A. Under interpretation I repre-

sents input to the computer:
x(gﬂq) = fx(s'(alao 1),.00, S'(akaok))

where f& is the projection of f on X
and 5'(8,1) = 5(8) if ¥,(goa) = (41 +++s)
and I(g) is not defined
= T(g) if Yi(goﬁ) = (¢y+++, ¢) and I(B) € S
= £S' (X1 (8)+B, 1),-0ey S (¥ (8) 8:K))
otherwise
where ¢8 = ¢ and S'(¢4,5) = ¢
Holland [9], Comfort [3] and others have discussed possible particular
iterative circuit computers, including their set up, programming, etc.
Holland [11] also shows that his ICC's contain a subset of composition-uni-
versal compositions. Basically this means there exist ICC's in which any

machine for computing a computable function may be embedded, anywhere in the

ICC.

Using Holland's formalism, we may define von Neumann's cellular space

as follows:

1)
2)

3)

4)

5)

23

A = the free group over two generators a,, a,.

1 -1}

A = {1, a,, a,, ai » a8, }. Note that the group identity must be

included in A° in order that the domain of the transition function
include the module itself.

X=1{1,2, 3, ..., 29} ‘.

Y = Yo where Y, is a 5 by 5 matrix with all zero elements, i.e.,
no information ''passes through" any.cell to others.

Vs e S, P(s)/y = Yo

(weaker conditions would suffice but this is convenient.)

F: S5 + X and, further, condition 4 implies that F is completely

determined by F restricted to XS.

The enumeration of F is not relevant here except to recall that von Neumann

designated a quiescent state q € X and required that

1)
and

2)

F(q4,9,9,9,4) = q

at most a finite number of modules be non-quiescent at time t = 0.

2. ANALYSIS AND FORMULATION OF SYSTEM REQUIREMENTS

The review of cellular models in the previous chapter presents a
diverse and challenging variety. Yet the strongly cellular character of
these models suggests an enticing commonality that we shall seek to ex-
plore and develop in this Chapter. By considering in t:rn each of the
major characteristics of cellular spaces and by comparing the ways each
has appeared in our examples, we shall work toward a single formulation

suitable for a range of applications.

2.1 Discreteness

Cell spaces are discrete in time and space. Their highly parallel
formulation is inherently closer to the fixed time-step method than to
the next-event method. Moreover, a synchronous or fixed time-step model
is considerably simpler to implement than a next-event model. (Of the
examples of Chapter 1 only Flanigan used a next-event form of simulation.)
Therefore, we shall assume that cellular spaces are syndwonous--that is,
that a new state value is calculated for every cell at the same instant
based on the current state of a space, and that the resulting configura-

tion is the state of the space at the next time step.

2.2 Uniform Connectedness

We are concerned with "regular" networks of cells distributed over

space. Holland's ICC model in terms of abelian groups gives the most

24

25

general notion of regular arrangment seen in the several examples. A
more general notion, in terms of finitely generated group graphs, is
suggested by Wagner [16] who recognizes, however, two important reasons
for restricting attention to the finitely generated abelian group
graphs: .
1) such groups give rise to many "nice" structures such as planes,
cylinders and toroids, and
2) the theory of such groups is well developed and decidable in
contrast to the general theory of finitely generated groups.
To these reasons we can add:
3) abelian groups give rise to a natural and physically intérpretable
coordinatization scheme, and
4) data structures corresponding to the abelian group generator
are rather straight-forwardly implementable while those of the
more general group graphs are not.

Flanigan's use of a hexagonal topology may appear to fall outside

the abelian group formulation, but in fact does not. The hexagonal topology

is easily obtained by choosing as neighbors those cells at coordinates
N=(Q,0), (0,1), (-1,1), (-1,0), (0,1), (1,-1)) relative to the central
cell. This is apparent if one imagines the major axes to be at an oblique
rather than right angle. (See Figure C.2 in Appendix C.)

Yamada and Amoroso [19] give a more complex hexagonal example with
cells heing centered on the vertices of covering hexagons and three neigh-
bors besides the central cell. Figure 2.1 (taken from Yamada and Amoroso)
shows how to embed this topology in the two dimensional framework by using

oblique axes and introducing ''dead" cells at coordinate points {(3m+2+n,n) |

26

(a) HEXAGONAL CELL SPACE

(b) EMBEDDING IN SQUARE CELL SPACE

Figure 2.1 EMBEDDING OF HEXAGONAL CELL SPACE

27

m, n ¢ 2} and suitably extending the transition functionl. Similar tech-
niques may be used for other configurations.

For all of these reasons this author feels the abelian group founda-
tion represents a good basis for a cellular simulation system. We shall
take advantage of the coordinatization property and represent spaces and

vectors in terms of the more intuitive coordinate notation.

2.3 Size of Simulation and Concept of Quiescence

To perform an actual simulation one is often faced with the problem
of simulating a logically infinite space on a finite computer. A size
must be determined and boundaries specified and even if the space is
finite (and within the capacity of the computer) there is still the task
of defining boundaries.

Introducing boundaries in an "infinite" model raises the problem of
what to do when calculating the transition function of a cell within the
boundary which has a neighbor lying logically outside of the boundary. 1In
models such as von Neumann and Codd used there is a very natural solution:
structure the cell space data management routines such that when the state
of a cell outside the actual simulation is required, then the quiescent
state is given. This is consistent with the formal requirement that only a

finite portion of the space is non-quiescent and, hence, everything outside

This is handled. for this case as follows: The cell state space, let us
call it S, is enlarged by adding a new state D (the dead state) which is
assumed only by thc dead cells. For a trans1t1on function F, F(Sl' 000 s7)
=D if and only if s, = D. If s, # Dbut s, = D then F(s s s++y Sa) is
determined by s,, s,, Sy and Se only. If s # D and s, = D then E(s 12 cves
s,) is determined by s,, s 3 Sg and s, only.” With such constraints one has
embedded the four ne1gﬂbor hexagonal space of Figure 2.la in a cartesian
seven neighbor space.

P T
.

——r——

28

the actual simulation is quiescent and will remain so by virtue of the
transition function.

A similar technique can be used in many biologically oriented
models by substituting 'background" for 'quiescent". The simulated cells
can be considered immersed in a 'larger" mass of cells whose behavior is
known and fixed. A straightforward extension of this idea is to permit
the background state to be varied as a function of time, or to be randomly
varied from access to access during the same time step, or both.

This is a powerful technique for simulating a large or infinite
space and at the same time it maintains the simplicity of writing the
transition function independent of concern for boundary conditions and
configurations. '

One service that would be very helpful for the simulator to perform
is to monitor the state of cells that are '"near' the boundary to detect
states that would, if part of the neighborhood of a cell outside the
boundary, lead to a change of state for such an exterior cell. This would
allow :“e experimenter to detect a "spread" of non-quiescent activity be-
yond the point where the validity of the simulation may be questioned. This
is, of course, easiest to perform in spaces having small neighborhoods (i.e.
small in distance from central cell) and a well-defined quiescent or back-
ground state. The ideal solution would be for the simulation system, on
detecting such a situation, to expand the boundaries of the actual simula-
tion to include the newly "active'" cell and keep going. A more realistic
approach might be to allow the investigator to specify the new boundaries
(subject to the same system constraints on specification as were followed

originally) and then to continue with the expanded simulation.

Y

Alternately one can avoid some edge problems by using Holland's
observation that abelian spaces are easily made cylindrical or toroidal
by adding certain constraints to the group. In some simulations this
kind of '"wrapping-around" could be more‘suitable than the quiescent/back-
ground approach suggested above. (A possible example is the propagation
of a 'wave" of activity in a neurai network.) This approach also provides
a simple way to '"close'" a finite group of cells on itself without impos-
ing an unwarranted '"stabilizing'" effect. Clearly this, too, can be ac-
complished at the level of the data management routines without requiring
any consideration at the level of the transition routine.

Both of the above may be useful where a regular neighborhood con-
figuration is desired. The problem of edges is also reduced in finite
spaces where each cell has an explicit neighborhood completely contained
in the space, Finley's simulation is an example of this.

But sooner or later a boundary must be specified--if only to de-
termine storage requirements in a computer. To this author's knowledge,
no one actually doing cellular simulation, with the exception of Flanigan,
has been concerned with providing boundaries more complicated than simple
rectangles. In his case the boundary was a simple convex polygon. Thus,
until further motivation arises, it should be sufficient to provide a

facility to define a boundary for a cellular simulation as being an arbi-

trary convex polygon. A simple way to define a polygon in a two dimensional

space is to list the coordinates of the vertices in clockwise order.

2.4 Neighborhoods

Once the cell space geometry is determined it is usually possible to

give a uniform specification for the neighborhood. One can think of a fixed

30

template that cove-s a cell's neighbors when some fixed point of the
template is on the central cell. This concept finds natural expression as
an n-tuple of vectors in the toordinates of the underlying space. The
ith element of the n-tuple represents a displacement which when added to
the coordinates of the central cell gives the ith neighbor of that cell.
A single template is defined which is applied uniformly throughout the
space.

In simulations where the neighborhood must vary from cell to cell a
method will be proposed for making that specification part of each cell's

data structure. Further there is no reason that part of the neighborhood

cannot be uniform across the space and part be cell dependent.

2.5 Transition Functions

The writing and rewriting of the transition functions used throughout
an investigation is likely to require a significant amount of an investi-
gator's effort. There is much need, therefore, to make the language for
expressing transition functions both powerful and oriented toward the
particular requirements of cellular simulations.

Transition functions are, by their very definition, local rules of
behavior that are applied throughout the space. A central quality of a
transition function language should be this ''localness'". Since it is a
function, it will suffice to construct it as a subroutine called by the
simulation executive with the states of neighboring cells as its arguments.
The only characteristic of the cell geometry and neighborhood template that
is essential in constructing the transition function is the number of

neighbors (arguments).

31

2‘571 Cell Data Structure
Each cell of a space has the same data structure which, except for
the number of computer words required to represent that structure in com-
puter storage, need not be known to the simulation system. It is not the
purpose of this dissertation to develop or investigate languages with
data structure capabilities as such. However, the availability of such
capabilities is believed to be so useful in coding cellular simulations
that basic though powerful data structure facilities will be included in
the particular language exhibited in Chapter 3.
In any systematic approach to data structures an important adjunct
is:
1) an ability to define operators to augment the pre-defined ones
of the language,
and
2) the ability to write constants of the newly defined data types
in a natural manner.
Both of these capabilities will be prominent in the language developed in

Chapter 3.

2.5.2 Parameters Called by Value

The method of calculating the next state of a cell space requires the
simultaneous parallel calculation of the next state of each cell of the
space followed by a simultaneous and instantaneous change of each cell to
that new state. The result is the new cell space state. But a simulation
on any real computer (perhaps excepting Illiac IV) proceeds serially cell

by cell. Clearly the next state of a cell cannot be immediately substituted

32
into the data structure upon calculation--the cell is potentially the
neighbor of some cell whose transition is yet to be calculated.

This implies that the parameters of a transition function must be
called by value and cannot be modified by the transition function itself.
The value of the function is a state description which must be saved
separately from the current cell space state until each cell's next state
has been computed. When a new state has been computed for all cells, the
next state can be considered the current state and the computation of a
new next state begun.

This can be implemented by using two data areas, each sufficient to
completely represent the state of the space. One area contains the cur-
rent space state and the other contains the next space state while it is
being computed, and the roles are reversed for the successive time steps.
Although this requires twice the storage needed to simply represent the
space state, it is in general the only satisfactory technique.

In some spaces with simple geometry and small neighborhoods, more
specialized techniques could be employed. For example, in the Von Neumann-
Codd simulations at most the equivalent of one row plus one cell need be
stored in duplicate. In more complex cases, one could search for scanning
algorithms that were based on the neighborhood relation in such a way to
systematically complete some 'compact' region of cells and expand regularly
from there to eventually cover the whole space. Parnas [13] has developed
some formal techniques for reducing both the space and computation require-
ment of simple spaces and neighborhoods. However, our desire to permit
arbitrary neighborhoods, such as Finley used, and even dynamically changing
neighborhoods, as in Holland's ICC's, clearly implies that nothing short of

full duplication of the cell space data structure will suffice.

33

2.5.3 Input-Output

A language for transition functions obviously needs no input-output
capabilities in the usual sense; it is simply a function. However, be-
cause some interaction with the transition function may be quite useful
at various times in an exploratory simulation, some rudimentary 1/0

facilities are recommended.

2,6 Input to Cell Space

Inputs to a cell space are states which are not specified by the
transition function but which are controlled independently outside of the
cell space. It has been suggested that an additional ''dummy" entry be
included in the neighborhood of each cell which, by convention, is not
the state of some cell but rather input for the central cell. This has
the conceptual inelegance of grouping two quite different functions into
the neighborhood concept. Further, all "real" neighbors of a cell have
states drawn from a common state space, while the state space of the input
will quite likely be different.

Yamada and Amoroso [19] formalize input as a set of possible transition
functions that may be applied to the space. The input determines which
transition is used on any given time step and the same one must be used
for every cell in the space. This, however, does not permit modeling
of spacially distributed inputs.

Yet another approach is to consider certain cells to have their states
controlled externally and not by the transition function.

Because none of the above notions of input is sufficiently flexible
to fulfill a variety of requirements, we have developed the following quite

different approach. Consider that there are a finite number of input streams.

I ——

34

An input stream is a function of time only with values in some designated
state space, Which stream is used as the input of a given cell is desig-
nated by the value of a substate of that cell's data structure. This
permits input to be spacially distributed in a natural manner (even with
dynamically changing spacial distributions) and the state space of the
input to be conveniently distinct from that of the cell itself. Alter-
nately, if the input state space and cell state space (except for the
input designation) are the same, then the transition function can, under

appropriate conditions, assign the input value as the state of the cell,

2.7 Output and Monitoring of Cell Space

In spaces with quite simple state spaces, the state is readily
represented by one of a small number of distinguishable graphics. Of
crucial importance is the ability to see the states of cells in their
spacial arrangement. In working with a complex state space, consisting
perhaps of several independent substates, it is difficult to represent the
full state of many cells in a compact and intuitive manner. There is
little previous experience to draw on. Our experience indicates that one
does not usually need to know the full state of a group of cells; rather
some characteristic property (often a particular substate) is sufficient
to convey the desired information.

Such properties may be computed by a set of auxiliary functions which
we refer to as maps or mapping functions. Each map is a function from the

cell state space into some distinctive set of symbols.1 These symbols are

. We admit to being motivated in part by the available hardware. The
display (a D.E.C. 338) has a character generator that allows faster execution
and more compact data tables than in other plotting modes. Moreover, the

T

35

chosen to be heuristically suggestive of the value of the property rep-
resented and uniform in size to permit easy presentation on CRT display.
We have adopted the strategy of having the state of a cell mapped
into a "character" to be used to represent its state to the experimenter.
After each update of the state of the space, the display mapping can be
computed for each cell of the space, nd the resulting graphics displayed
in their spacial arrangement. Provision should be made for several such
mapping functions, perhaps with distinct character sets, to be able to

view different aspects of the space state.

2.8 Interactive Requirements

A range of commands will be required to effect control of a cellular
simulation. A list of such commands could be made arbitrarily long as
more and more general and powerful commands are constructed and more
specialized requirements included. The following kinds of capabilities
are minimal and should be included in any cellular simulation system.

1) Specify important characteristics of a cellular simulation:

transition function
neighborhood
boundary

edge convention, etc.

2) Simulate for a given number of time steps while monitoring the
behavior.

3) Change the display mapping function used to designate cell state
characteristics.

4) Provide general capabilities for changing the state of individual
cells.

character set is user defined from control tables in a reserved area of
memory so that a ''character" may in fact be any figure that is desired.
At most 128 such characters may be specified, of which one must be an
"escape character mode" pseudo-character.

et

36

5) Provide a capability for interacting with the transition function
itself, to change parameters, etc.

6) Provide a mechanism for a transition function to indicate a
"not-defined" condition and perform interaction with user to de-
termine what to do without upsetting the logical integrity of the
simulation.

7) Save a given cell space state with appropriate identification for
later possible use. The saved data should contain sufficient co-
ordinate information for the purposes of the restore operation.

8) Restore the current cell space state from a given named file area.
If boundary information differs, provide an option for keeping
the parts that overlap.

9) Provide facilities to conveniently define input streams.

2.9 New Language or 01d4?

Available languages do not provide the kind of data structure flexi-
bility that is iﬁportaﬁt iﬁ cellular simulation. Simulation languages
are typically orientated toward models with diverse elements with ir-
regular interconnection topologies; they are concerned with statistical
measurements such as average waiting time, length of queues, etc. and
usually ignore the problem of simultaneous change of state of independent
elements of the model. All of these characteristics make available
languages awkward tools at best for performing cellular simulations.

New language constructs and the attendant checking and enhanced ex-
perimental useability are important to successful exploitation of cellular
space models. We have given a formulation of cellular spaces that is
broad enough to cover a variety of applications and rich in structure not
provided by existing general purpose languages. In Chapter 3 a new
language encompassing our formulation is developed which will substantially
aid in conducting cellular simulations. It should be understood that while

the author has implemented this language, it is the suitability of the

37

language that is important, and not his particular implementation.l Most
important is that the language, however implemented, be suited to the task

of simulating cellular spaces.

2.10 Formalization

This section' concludes by formalizing the structure of the class of
models realizable in our system. This characterization is based on the
simulation system actually implemented in order to more concisely describe
that system. It is presented here because the notation will be useful
later in describing some of the details of the actual system.

Let 2 be the set of integers both positive and negative; then 2 & 2
is an infinite two dimensional cartesian plane which we call P. Sp is a
cellular space iff

SpCPvuE
where card (E) =1 and ENP = ¢, and Sp NP is circumscribable by a convex
polygon.

Edge effects are defined by a function

e: P+ Sp
such that =
| Ya[a € Sp =pe(a) = a].
The function e provides the mechanism for "wrapping around" to form cylinders,
etc., as well as supplying a "default" state for neighbors outside of Sp;

the constraint preserves the identity of cells within Sp.

s Implementation of such a new simulation language may be possible in one
of the emerging "extendable" languages, such as MAD/I. Unfortunately none
was available in a form suitable for our -use. We have worked entirely in
assembly language for the IBM 1800.

38

The general neighborhood N, i.e., common to all cells of the space,
is an ordered set of elements of P:
N = (Al, Az, soop An) where each Ai cP
The Ai are displacements from the central cell.
The state S of a cell consists of three parts:
S=XuaN s M
where
X is normally interpreted as the cell state
N' is the local neighborhood, and
M is an input selector.
While X is the part that is usually considered the "state" of a cell, the
formal inclusion of N' and M will be exploited to provide dynamically
changing neighborhoods and inputs. In particular N' may be functionally
dependent on the time step and location while N is independent of both.
The total neighborhood of a cell a ¢ Sp is simply N (a,t) = N + N'(a,t),
where "+'" here means the ordered concatenation of ordered sets.
Input is defined as a function of an index, or selector, and time:
I: {1, ..., m} & T ~+Q
Each 1 (m,:) represents an input stream, and which input stream corresponds
to a cell is determined by a substate of the cell data structure. The
input to cell a is thus given by
I (M(a,t), t).
The transition function f,

f: SaSa...a58Q~+S

39

S(a,t+l) = f(s(e(a+A1), t), ..., S(e(a+'An+n,), t), I(M(a,t), t)
Note that edge effects are incorporated within this formulation,

Output functions 0i map from the state space to a finite number of
displayable graphics:

0.: S+ (G, ..., G l},n <127,

3. A LANGUAGE FOR CELL SPACE SIMULATION

The Cellular Space Simulation Language is a procedure oriented
language designed to facilitate the writing and simulation of cellular
space models. It provides a full complement of arithmetic and logical
operators; a facility for defining structured data types and operators
on those data types; and various data types, operators, and statements
intrinsic to the simulation environment in which the translated object
program will be executed.

The grammar for the language is syntactically an operator grammar.
The lexical format is free form with respect fé the input medium. The
basic logical unit is the construction (terminated by a semicolon) in
order to facilitate error recovery insofar as possible. Statements
are one or more concatenated constructions. A sequence of statements
is a program.

In describing the language we shall use the following conventions
and notations. Example sections of source coding will be on separate
lines with double indenting to keep them distinguished from the describing
text. Source words are always in capital letters and this is also a
useful cue, Syntactic descriptions of the language grammar will use
a variation of the more common BNF notation.

Syntax will be described in its production (rather than reduction)
form, e.g.,

<A> + B <C> a0

which may be read ''the non-terminal symbol <A> may be replaced by the

40

41

symbol B followed hy the non-terminal <C>". Tall square brackets will be
used to designate several mutually exclusive possibilities, of which one

must be present. Thus,

X <L>
<A> » <C>
B
may be considered a shorthand for the two productions:
<A> »> X <L> <C>
<A> + B <C>
The latter will often be simplified by not repeating the left side, as in:
<A> + X <L> <C>
-+ B <C>
Curly brackets will be used to indicate a sequence that may be repeated an
arbitrary (possibly null) number of times. If sub- and superscripts follow
the right bracket, they are interpreted as minimum and maximum number of
repetitions, respectively. Thus,
<A> + X {Y}
describes the same collection of terminal strings as
<A> + <A> Y
+ X
ani
> > (XD 2
is shorthand for
<A> -+ XZ
+ XXZ

+ XXX2Z

s

42

We will not be concerned here with the subtleties of the differing parsing
trees that might result from alternate inte;pretations of these shorthands.
We distinguish between a description grammar which is used to convey the
language to users, and an implementation grammar which is used explicitly
for syntax directed parsing. Since we are primarily concerned with
describing a language, the above conventions are both a convenience and
in some cases more intuitively meaningful than a comparable BNF expression.

We admit that this dichotomy of grammars leaves ample opportunity for
conflict and inconsistency between the description and the implementation.
But since the compiler currently implemented used syntax directed methods
only at the level of expressions and assignment statements, there is no
formal implementation grammar for many aspects of the system. Accordingly,
we will not be too embarrassed to occasionally use a suggestive non-terminal
symbol such as <integer constant> without anywhere giving a syntactic
definition of the symbol. The intention will be clear, and will accurately
convey much semantic information about what is actually required by the
compiler.

Summaries of the syntax, keyword tables, etc., may be found in Appendix
A, Implementation of the compiler is discussed in Appendix B.

An example of a transition function written in this language is
exhibited and discussed at the end of this Chapter. The reader may find

it helpful to refer to Figure 3.3 for examples while reading the Chapter.

3.1 Procedural Aspects

3.1.1 Lexical Format
The lexical unit of the language is the atom. An atom is defined as

1) any of the non-alphanumeric characters except spaces or

43

quote, e.g. + - / %,

2) any string of alphanumeric characters delimited by
non-alphanumeric or space or quote (period is considered
a numeric and dollar sign an alphabetic),

3) any string of characters enclosed in quotes, (a quote
character may be included within a quote striAk by two
quotes in succession).

Note that space itself is never an atom and may always, and must sometimes,
be used as a delimiter between atoms. For example, 123 is one atom while
1 2 3 is three atoms.

Lexically a construction is any sequence of atoms (except semicolon)
which is followed by a semicolon. Note that the semicolon is considered
part of the construction. Thus, the following construction consists of
14 atoms:

AX = A(5) + B[1, P$T);

A statement consists of a given number of constructions concatenated
together and satisfying certain constraints. The statements of the
language will be developed in detail shortly.

A numeric atom is an alphanumeric atom consisting of only numeric
characters and at most one period. An alphabetic atom is an atom of only
alphabetic characters. A A-atom is an alphanumeric atom which is not a
numeric atom and not a reserved atom (i.e., not used as a keyword or for
any other predefined purpose). \-atoms may be used as variable names or
labels, defined as operators, etc.

If the first atom of a construction is a A-atom and the second a colon

then the A-atom is implicitly defined as a constant of type LABEL. (See 3.1.2).

-

44

In general, the language allows only one kind of use for an atom.

For example, no atom could be both a defined data type name and a label

even though the correct use could almost certainly be inferred from the

context. However, the dual use of "-" (minus sign) as both a unary and

binary operator is so pervasive that it has been explicitly accommodated.

3.1.,2 Primitive Data Types

The primitive data types of the language are:

1)
2)
3)
4)
5)
6)

Each of

INTEGER
REAL
BOOLEAN
LABEL
TEXT

FUNCTION

the above atoms is a keyword whose use in the language is re-

served for this particular purpose.

In general, the variables of the language may be of any of the above

types. Constants of the above types will be recognized by their lexical

properties as follows:

1)
2)

k)]
4)

An INTEGER constant is any numeric atom without a period.
A REAL constant is any numeric atom containing exactly one

period.
BOOLEAN constants are the atoms TRUE and FALSE.

LABEL constants are any A-atom that occurs in the label field

of a statement.

40

5) TEXT constants are recognized by their containing quotation
characters.
6) FUNCTION name constants must be explicitly declared as

explained later.

3.1.3 Declarations

There are twq?seneral declaration statements: DECLARE... and DEFINE. ..
The first simply assigns a given attribute to each of a series of A-atoms.
The form of the statement is: ‘-

DECLARE <type>: <A-atom list>;

For example:

DECLARE REAL: A, B, C;

DECLARE INTECER: X, Y, GEORGE;
would establish A, B, and C as real valued variables and X, Y, and GEORGE
as integer valued variables.

Acceptable A-atoms for the <type> are any of the primitive data type
names or any of the defined data type names (as explained below).

Two types of composition operations are available to generate data
structures more complex than the primitives. The simpler of these is the
fixed length array. The form is:

DEFINE <)A-atom> ARRAY <type> SIZE <integer constant>;

The interpretat<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>